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OVERVIEW 

The Centers for Disease Control and Prevention defines a 
traumatic brain injury (TBI) as “a disruption in the normal 
function of the brain that can be caused by a bump, blow, 
or jolt to the head, or penetrating head injury.” 

The severity of a TBI may range from “mild” (i.e., a brief 
change in mental status or consciousness) to “severe” 
(i.e., an extended period of unconsciousness or memory 
loss after the injury).   Mild TBIs (mTBI) are the most 
common1, and the most challenging for clinicians to 
evaluate.  Only a small minority of patients with mTBI 
present with intracranial CT scan abnormalities, and there 
is little evidence that traditional cognitive testing can 
provide a reliable and sensitive assessment of cognitive 
dysfunction after mTBI2.  A recent systematic review of 
peer-reviewed published literature found that “diagnostic 
accuracy for mTBI is currently insufficient for 
discriminating between the disease and co-occurring 
mental health conditions for both acute and historic 
mTBI.”3. 

Event related potentials (ERPs) are an objective measure 
of cortical synaptic dysfunction that can result from mTBI, 
and are sensitive to cognitive deficits associated with even 
the milder injuries.  Thus, ERP testing can improve patient 
management by providing clinicians with a more accurate 
assessment of patients’ cognitive status after a traumatic 
event, especially in hard to evaluate mild cases. 

EVENT RELATED POTENTIALS 

ERPs are part of the EEG generated by sensory and 
cognitive processing of external stimuli, and reflect the 
summed synaptic activity produced when similarly 
oriented neurons fire in synchrony in response to the 
stimuli4. 

The stimuli of the ERP test are grouped into sequences of 
repeating sounds or visual cues.  The type, timing, and 
sequence of stimuli (often called an “ERP paradigm”) are 
organized to target specific cognitive processes such as 
selective attention, memory encoding, executive function, 
etc. While the brain subconsciously analyzes the incoming 
stimuli, EEG time-locked to each stimulus is recorded.  At 
the end of the test, the time-locked EEG recordings are 
averaged according to stimulus type, and all brain activity 
not related to the specific stimulus group is “filtered out”.  
What is left are the ERP waves that represent the 
physiological responses evoked by each stimulus type 
played during the test (Figure 1). 

These ERP waves contain a sequence of positive and 
negative peaks, or “ERP Features”, that have been 
extensively characterized in the scientific literature (for an 
overview see5).  The early peaks are primarily “sensory” 
responses that depend largely on the physical parameters 
of the stimulus.  Those sensory responses are followed by 
later “cognitive” peaks which reflect information 
processing, and can be used to detect and quantify 
cognitive deficits associated with mTBI6. 

ERP MEASURES FOR TBI 

ERPs have been used to elucidate and characterize 
sensory and cognitive deficits that may follow brain injury 
since the early 1980s7.  A large body of scientific literature 
on the usefulness of these biomarkers for diagnosis and 
prognosis of TBI has followed.   

Recent reviews of published literature on electro-
physiological methods for diagnosis of TBI have found that 
ERPs offer significant utility in TBI detection8–11.  Indeed, 
the American College of Occupational and 
Environmental Medicine (ACOEM) guidelines for TBI now 
recommend Cognitive Event-Related Potentials as a 
diagnostic measure for TBI12. 

ERPs contribution to TBI diagnosis seems especially 
important to detect subtle deficits in information 
processing in patients that present with otherwise normal 
clinical findings9–11,13. 

There is good evidence for the use of ERPs as biomarkers 
to also support TBI prognosis.  In a recent review Duncan 
et al. summarize the peer-reviewed published data as: 
”The consensus would appear to be that the use of N100, 
MMN, P300, and perhaps P3a in various combinations, 
has great prognostic value for both awakening and 
cognitive recovery.  The particular choice of components 
differs among investigators, but the use of ERPs in 
assessing coma would appear to be an essential, if not 
mandatory, aspect of medical practice.”9. 

ERP testing provides flexibility in protocol design.  ERP 
paradigms can be designed to produce measures that 
correlate with different sensory and cognitive domains 

 
Figure 1: Example of an ERP wave 
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(for an overview see4).  Several ERP paradigms have been 
shown to detect deficits associated with TBI.  An ERP test 
that is especially sensitive to those deficits is the Active 
Auditory Oddball Paradigm. 

ACTIVE AUDITORY ODDBALL PARADIGM 

In this ERP protocol, an infrequent (target) tone is played 
occasionally during a stimulus sequence of frequent 
(standard) stimuli.  A third unexpected (distractor) tone 
can also be present.  The test subject is instructed to 
respond when the infrequent target tone is heard9. 

The active oddball paradigm generates ERP features such 
as P3b, P3a and N200 that reflect aspects of information 
processing involved in stimulus discrimination, evaluation, 
and categorization5, and are sensitive to cognitive deficits 
associated with TBI.  

The P3b, or classic P300, is a positive-going component 
that is elicited by rare, attended (target) stimuli.  It is of 
maximal amplitude at the centro-parietal electrodes and 
reflects an update in working memory (for review of the 
neuropsychological origins of the P3b, please see14). P3b 
amplitude is determined by the amount of attentional 
resources allocated when working memory is updated15.  
The peak latency reflects stimulus evaluation and 
classification speed16,17. 

P3b is a highly sensitive ERP measure for deficits in 
cortical synaptic function that follow TBI.  In a study 
aimed at investigating neuropsychological and 
neurophysiological changes after sport concussion in 
children, adolescents and adults, Baillargeon et al.  found 
that “all concussed athletes had significantly lower 
amplitude for the P3b component compared to their non-
injured teammates”18.  In another study to measure P3b 
components from patients with TBI, Doi and colleagues 
reported a significant decrease in the peak amplitude 
compared to healthy individuals19. 

P3b can show significant changes even in mild cases of the 
disease.  A study that looked at ERP changes in college 
students after mild TBI reported a “striking” decrease in 
P3b amplitude.  Moreover, the change in P3b amplitude 
was strongly related to the severity of post-concussion 
symptoms20.  Similarly, a study that looked at the effects 
of a minor head injury on P3b found significant 
abnormalities in both peak amplitude and latency21.  A 
study of neurophysiological anomalies in symptomatic 
and asymptomatic concussed athletes showed as 
significant reduction in P3b amplitude in both groups of 
subjects compared to controls22, and another study that 
compared the performance of 10 well-functioning 
university students who had experienced a mild head 
injury an average of 6.4 years previously, and 12 controls 

on a series of standard psychometric tests and ERP 
measures also found a significant decrease in P3b 
amplitude in the mild head injury group23.  

The P3a is a positive-going peak that in an active two‐
deviant oddball paradigm is generated in response to the 
distractor stimulus and is of maximal amplitude at the 
centro-parietal electrodes24.  The P3a is associated with 
engagement of attention and processing of novel 
information14.  The peak amplitude is a measure of focal 
attention and has been shown to positively correlate with 
executive function25.  Its latency reflects orientation to a 
non‐target deviant stimulus26. 

Several studies have shown P3a changes after mTBI.  A 
study in asymptomatic multiple concussed college football 
players reported significantly decreased P3a (and P3b) 
amplitude in study subjects that sustained their last 
concussion within a year of the ERP recording.  The deficit 
was no longer present in athletes who sustained their 
concussions more than 2 years prior to testing27.  Moore 
et al. have recently reported similar results in soccer 
players with a history of concussion28.  In a study on 
moderate to severe TBI survivors, Solbakk et al. found 
that P3a amplitude was reduced compared to healthy 
controls when frontal or fronto-temporal brain regions 
were injured.  In addition, TBI survivors also exhibited a 
trend towards prolonged peak latency29.  Interestingly, in 
a study that correlated ERPs to malingered executive 
function Hoover et al. reported that malingerers were 
unable to produce a significant change in P3a response30.  
The study findings are consistent with the ACOEM 
guidelines for TBI that include ERPs as a recommended 
test under “Memory/Malingering Tests”12,  and suggest 
that ERP measures could help differentiate between 
malingerers and patients with genuine TBI.  

Finally, the N200 is a component of negative polarity that 
in an active oddball paradigm is elicited by rare, attended 
(target) stimuli.  The N200 precedes the P3b and is linked 
to the cognitive processes of stimulus identification and 
distinction31.  The peak is maximal over fronto-central 
brain regions24 and its latency has been shown to 
correlate with measures of executive function and 
attention32. 

N200 measures seem to be mostly affected in patients 
with a history of moderate or severe TBI.  Sarno et al. 
have shown prolonged N200 latency in survivors of severe 
TBI33.  In two similar studies, Duncan et al. reported 
smaller amplitude and prolonged latency for N200 in 
survivors of moderate and severe TBI34,35.  In one of the 
studies significant correlations were also found between 
severity of head injury, as measured by length of 
unconsciousness, and N200 latency and amplitude34.  
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ARE ERP NECESSARY FOR THE EVALUATION OF TBI?  

When head trauma requires medical attention, clinicians 
will often request structural neuroimaging data provided 
by CT or MRI scans.  However, these two neuroimaging 
techniques seem to underestimated brain injury and are 
poorly correlated with outcome (see for example36–40).  
The main reason for this seems to be that neither CT nor 
conventional MRI sequences detect diffuse axonal 
injuries, the most common form of TBI41–46. 

In their review on the potential usefulness of 
electrophysiological markers for cognitive deficits in TBI, 
Dockree and Robertson conclude that “Cognitive testing 
and electrophysiological analysis provides sensitivity to 
impairments which are otherwise undetectable by general 
neuropsychological evaluation and standard MRI. It is 
noteworthy that studies which have restricted their 
analysis to mild TBI where cognitive sequelae are difficult 
to measure routinely have nevertheless identified ERP 
markers of more subtle deficits of visual processing 
speed47 attention deployment48–50 and error monitoring51.  
A World Health Organization investigation has reported 
that 70–90% of all treated for TBI were classified as mild 
severity52.  Although it is important that electro-
physiological markers are utilized across all severities of 
brain injury to understand the diversity of processing 
deficits, their use in conjunction with cognitive paradigms 
may be more sensitive to persistent cognitive dysfunction 
resulting from mild TBI where signs of damage may elude 
routine assessment.”10. 

In the latest revision of their guidelines for TBI, the 
American College of Occupational and Environmental 
Medicine now recommends cognitive ERPs for “Post-TBI 
patients who either have symptoms of cognitive deficits 
and/or have sustained a TBI sufficient to cause same.”12. 
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